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Abstract

Monte Carl Tree Search (MCTS) has shown promise as an exploratory mechanism
for Large Language Model (LLM) and Vision Language Model (VLM) reasoning
traces. However, the full MCTS algorithm is very expensive, requiring long
and noisy full simulations to terminal states to produce a reward signal. As a
result, using MCTS to explore more difficult and longer reasoning problems are
simply intractible. In this paper, we propose a modified and budgeted Monte
Carlo Tree Search (MCTS) module to guide the model response generation. More
specifically, this framework provides a novel approach for self-improvement of
models by generating reward traces without full MCTS simulations. We show that
our methods increase efficiency tremendously without sacrificing accuracy. We
provide code for our methodologies here.

1 Introduction

LLMs have displayed extraordinary capabilities in complex reasoning tasks. However, LLMs suffer
from hallucinations, where models generate plausible but incorrect reasoning traces. These limitations
have stalled the creation of superhuman intelligence, with efforts diverted to the understanding and
mitigation of hallucinations in LLM tasks.

Previous works have found indicators of LLM hallucinations in reasoning tasks. Multiple sources have
identified answer uniqueness as a reliable indicator of LLM response correctness [[1] [2]] [3]. Several
frameworks have been proposed to utilize the answer uniqueness indicator. For example, Xue et. al.
[4] considers the use of uncertainty quantification for VLM reasoning and benchmark construction.
Zhang et. al [5] explores the use of token-level uncertainty for self-assessment and improvement. In
addition, other prior works have asserted that models already contain a surplus of knowledge, and
finetuning does not inject novelties [6] but rather makes certain phrases more likely. These results
suggest that an efficient token-level search combined with uncertainty quantification is promising for
future work. Search methods such as MCTS in combination with reinforcement learning have shown
superhuman capabilities in chess and go [[7]. Inspired by this success, recent works have focused
on the application of these search methods to LLMs [8]]. Most notably, Alphal.LLM [9] proposes a
model-driven self-improvement loop using MCTS search of best batch-of-token generations. Despite
the powerful search capabilities of MCTS, the search process is incredibly inefficient, with each
node generation iteration of the search requiring the generation of an entire response. This suggests
the following: How can one design an efficient MCTS search capable of achieving comparable
performance to previous MCTS-inspired search strategies?
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Figure 1: The self-improvement loop of our model for generating preference pairs for reinforcement
learning. Given a question-image-answer pair, we use the VLM itself to generate reasoning traces
using MCTS. Then, we take the most promising children, simulate to end, and generate preference
pairs.

In this paper, we propose a modified but efficient MCTS-inspired search for model-guided reasoning.
Our search module requires no full MCTS simulation rollouts for reward. Instead, we propose
heuristics aligned with non-circular reasoning and conciseness. Similar to previous works, we search
for the best response sentences at a time. To increase model efficiency and response conciseness, we
implement a strict limit on MCTS tree size and we implement early stopping. We show a visualization
of our MCTS-inspired search in figure|l} We present experimental results to show that our efficient
MCTS-inspired search can achieve comparable performance to previous methods while being faster
for reasoning questions.

2 Related Work

Much of the recent work on reasoning for VLMs have been on the curation of high-quality data
for VLM training. ThinkLite-VL [[10] presents a methodology for filtering out data points through
MCTS, where data that is more challenging for VLMs were kept. More specifically, the more MCTS
reasoning steps that need to be taken, the more challenging the data is. Chen et al. [11]] focused
on a data-curation pipeline that would improve the spatial reasoning capability of VLMs. This
pipeline scrapes images from the internet and creates questions simple to humans which test the
spacial reasoning of models. Liu et al. [12] curates data similarly to [[10] through an MCTS process
except the MCTS was used to generate reasoning traces instead of quantifying data difficulty. These
reasoning traces were then fed into an actor-critic model, where a critic model was trained to provide
good critics to an actor model to get the correct solution. Tian et. al [9] explores the use of MCTS
for self-improvement of LLM responses. It is natural to consider a state-traversal algorithm where
MCTS guides the search of the module. Kuznetsov [[13]] explores the use of MCTS to guide traversal
in settings where the action space is Euclidean and continuous, whereas previous state of the art
only used random noise to guide traversal. Shunyu Yao et. al [14] introduced the Tree of Thoughts
framework which generalizes over Chain of Thought and allows a deliberate reasoning process. They
do so by using a state evaluator heuristic to value which states to select, and primarily focus on
problems where the size of the tree can be limited. Acuna et. all [8] uses an MCTS-inspired algorithm
that injects subquestion-subanswer pairs into the model’s output stream at test-time to generate better
answers. In this framework, each action would be a subquestion that MCTS would traverse over to
reach a terminal state. Many other benchmarks were created to test the visual learning capabilities
of VLMs [15][16[][l17]. Although some works are similar, none of these works utilize modified and
more efficient MCTS module to guide LLM responses.

3 Preliminaries

Consider a VLM model fp, and when given an input prompt « := [z1, Z2, ..., Z,,], Where each z; is
a token, generates a reasoning trace y = [y1, Y2, ..., Ym| CONtaining answer a = [aq, ..., ag]. We
denote the autoregressive, trainable policy mp(y | =) = IIX po(y; | x,y<;), where py denotes
a trainable probability distribution of tokens. A state s; would represent the current incomplete
response of a prompt, and the terminal state would be a full generated response of VLM fy. For our
purpose, each action a; would be the concatenation a new step of reasoning, either an equation or



sentence, to current response state s;. The reward r; would be the average reward of the simulations
of a state s;. We define the simulation R; of reward function Our goal is as follows. We define the
correctness function C(z,y) — {0, 1} by whether a terminal node, reached either by simulation or
node generation, contains an answer a equivalent to ground truth answer. Given a VLM fj, find a
response y such that mp(y | ) > 0 and C(z,y) = 1. We discuss methodologies for searching for
such a y in Section 4]

Monte Carlo Tree Search (MCTS) is a methodology for heuristic search that balances the exploration
of unvisited states and the exploitation of visited promising path to find an optimal solution in complex
search space without the needs to randomly explore all states. MCTS has been adapted for VLMs
recently to treat reasoning as a sequential decision-making process. By structuring the reasoning steps
as a search tree, MCTS allow the model to browse various logical path and evaluate the intermediate
reasoning step before committing to the final answer. The standard MCTS algorithm mainly consist
of four phases:

1. Selection
The algorithm begins with the root node and traverse down to a leaf node. At each step, the
tree use Upper Confidence Bound (UCB) to determine the next child node to visit, which
mathematically balance the Exploitation and Exploration.

2. Expansion
Once a leaf node is reached, if it is not a terminal state, the tree expands. For VLMs, the
model will generate one or more new candidate reasoning steps extending from current
contexts. These new steps are added as child nodes to the leaf.

3. Simulation
Once a new leaf node is added, a rollout policy is used to estimate the potential value of
reaching this state without performing exhaustive search. For VLMs, the model generate
continuous reasoning steps until a stopping criterion is met, usually the end-of-sentence
token.

4. Backpropagation
Once the simulation reaches a terminal state, the reward is calculated based on whether or
not the final answer is equivalent to the ground truth. This reward signal is propagated back
up the tree, updating the value estimates () and visit count (/V) for every nodes on this
path.

These four phases drive the search toward a desirable reasoning path. Crucially, the efficiency and
success of this process highly depends on the Simulation and Backpropagation phases, where our
Lite MCTS framework introduce its key modifications to enable efficient data collection.

4 Implementation

In this section, we introduce the entire modified MCTS module. First, we describe metrics for
computing node similarity within our modified MCTS. This action similarity is integral for the reward
function we utilize for shallow simulation components. We emphasize that our core contribution is
the methodology for shallow rollouts. Previous results suggest that most models have the knowledge
to solve most reasoning problems, and we show that a lighter MCTS can find correct reasoning traces.

4.1 Action Similarity

A crucial challenge in applying MCTS to generative models is the vastness of action space. Traditional
use cases of MCTS explore problems with much smaller search spaces. To prevent the search from
wasting resources on redundant or repetitive reasoning paths, we implement a node similarity metric
to measure how similar two reasoning steps are. This enables our Lite MCTS framework to detect
two important signals: Answer Convergence and Self-Looping Reasoning.

1. Answer Convergence: There are various ways to solve a problem, but there is only one
correct answer. If distinct reasoning paths converge, the branches are more likely to be
correct.



2. Self-Looping Reasoning: Repetition in reasoning is expensive and unnecessary. If a path
contains similar reasoning steps, it might suffer from self-looping reasoning.

We utilize a Term Frequency-Inverse Document Frequency (TF-IDF) approach to quantify the sematic
uniqueness of a generated reasoning step. For a given node n, let a,, be the action (reasoning step),
and D is the collection of all generated action in current search tree. For each unique word w in a,,,
we can calculate the Term Frequency (1'F') and Inverse Document Frequency (I DF’) as follows:

TF(w,a,) =1I(w € a)
IDF(w,D) =log ———
(w, D) = log count(w, D)

where I is the indicator function, N is the number of nodes in the tree, and count(w, D) represent the
number of nodes containing the word w. The TF-IDF vector can be obtained:

v=TF xIDF

We measure the similarity between a new candidate action a,.,, and a set of existing nodes. To
compute the consine similarity of these two TF-IDF vectorized representations vy,cq, and viqpget, the
similarity score S is defined as follow:

Unew * Vtarget
S g9

B ||Unew|| ! ||Uta7'9€t||

We maintain a global counter that updates dynamically as the tree expands. Thus, we ensure the
similarity metric evolves dynamically, penalizing self-looping reasoning and rewarding converging
answers.

4.2 Reward Model

In our Lite MCTS framework, we prioritize breath over depth. Thus, we implement a piecewise
heuristic reward function to effectively value each state. The reward is determined as follows:

1. Terminal Correctness: If the simulation reaches a terminal state, we verify the correctness
of the generated answer with the ground truth.

+1.0 generated answer is correct

R, inal — is i
ermina —1.0 generated answer is incorrect

2. Similarity: If the state is not terminal, we utilize our similarity metric to access the structural
quality of the reasoning path. We compare the new state with the existing search tree to
detect two important signals:

* Penalty for self-looping reasoning: If a new state is similar to a node within its own
ancestor trace, it indicates self-looping reasoning. To discourage the model getting
stuck in repetitive loop, we apply a penalty:

Ripop = —0.15

* Reward for converging answers: If a new state is similar to a node in different branch,
it indicates answer convergence. To encourage the model getting to this promosing
reasoning, we apply a reward:

Rconverge = +0.15
3. Default Heuristic: If the state is not terminal nor similar to others, we simply assign a

neutral reward of 0. This encourage the tree search to continue exploring.

4.3 Shallow Simulations

The standard MCTS has a major flaw when applied to a language task. During the simulation phase,
it is unclear how many rollout steps will be necessary to reach the terminal state. In other words, it
has no upper bound. The simulation can be indefinite and results in huge computational bottleneck



during an iteration of MCTS. Furthermore, there is a need to simulate each node that we add to
the tree till the terminal state in order to update the reward. The computational cost explodes when
searching through a large space such as in the case of a reasoning task.

Shallow rollouts mean you stop at an earlier point before reaching the terminal state. Instead, you
take only a few steps, estimate the value based on those few steps and return early with a reward.
This reduces the computational cost dramatically. A simple way to enforce this would be to have
a cap on how many steps to simulate. In Thinklite-VL, they use a fixed rollout depth of 10 for all
problems with the possibility of early exit if terminal state is reached. This is still expensive as there
is no guarantee that a terminal state is reached in 10 steps for hard problems. If a terminal state is not
reached, it would not be possible to get a reward.

We propose an approach to get sound reward even with shallow rollouts. Using the same action
similarity metric as described in [4.1] we are able to reduce the number of steps required during
simulation to & = 5. The reward is updated based on the reward model described in[4.2]

Our simulation has three stopping conditions:

1. Terminal state reached (answer found with \boxed{} format):

 Extract answer and check correctness against ground truth
e Return +1.0 if correct, —1.0 if incorrect
* Cache the rollout for later use in preference pair generation

2. Similar state detected (via TF-IDF cosine similarity > 0.9):

* Check if similarity is within same trace or across different traces
* Circular reasoning (same trace): Return —0.15 penalty for looping

* Convergent reasoning (different traces): Return +0.15 reward for multiple paths
reaching same conclusion

3. Step limit reached (k = 5 steps):

e Return 0.0 neutral reward if no terminal or similar state found

4.4 Preference Pair Collection

After the construction of the MCTS-inspired search, we only collect preference-pairs of problems
where a positive solution and a negative solution is reached. The existence of purely negative traces
suggests that the problems would be too difficult for the model to solve, while only positive traces
suggests the question was too easy. If even after reaching the node limit, we are not able to get
terminal leaf nodes, we simulate the current response to finish to get the final answer from the model
and get the reward based on whether an answer was found or not.

4.5 Model Choices

We make additional design choices that deviate from the standard MCTS design. While other works
[9]] suggest an adaptive branching methodology, we enforce a strict limit of k¥ = 5 generations from
each node for simplicity. We emphasize that this does not imply that each child has & = 5 children;
each generation is checked for similarity with other nodes. In addition to a generation cap per child,
we enforce a node cap to the entire tree. When this node cap is reached, we take the best N = 5 leaf
nodes and simulate these nodes to terminal state. To prevent unnecessary searching, we implement
early stopping when the model achieves the correct answer.

S Experiments

5.1 Experimental Setup

For experiments of the efficient MCTS-inspired search we propose, we choose to evaluate on a random
100-sample subset of MathVista [18]]. We provide the data sample ids used in the Appendix[A.2] We
compare the performance of our methodology to the standard MCTS, with a couple modifications.
Similar to the MCTS-inspired search, we implement the standard MCTS to produce a fixed & children
nodes. We also implement early stopping. As a consequence, the only difference between the two



methods are the similarity node matching modules. To guide MCTS generation, we use Qwen2-VL-
7B for both iterations of MCTS. We set ¢ = 0.5 for the expansion constant of UCB. For each node in
the tree, we generate 7 children, and we fix simulation rollouts to be of max depth 5. We compare the
two methods in terms of efficiency and accuracy.

5.2 Results

Here, we provide comparisons between the standard MCTS and the efficient MCTS. The accuracy
values and the time taken are average values.

Table 1: Comparison between standard MCTS and efficient MCTS

Model Accuracy Time Taken (sec)
Standard 55% 344.01
Our Method 57 % 315.56

We emphasize that the MathVista questions require few reasoning steps, so for more complex
questions, we expect greater speedup. These results show our additions of similar response filtering
for shallow rollouts increase efficiency while maintaining accuracy.

6 Conclusion

In this paper, we have described a more efficient modification of MCTS to perform state search
over model generation possibilities for self-improvement. In addition, we showcase a small dataset
generated with Qwen2-VL-7B using our light MCTS methodology. Experimentally, we show
that our methodology achieves comparable performance while being more efficient compared
to its traditional counterparts. A natural extension of our work would be to consider the results
of our efficient MCTS-inspired search on more datasets. For our next iteration of this work,
we target GSMS8k [19], ImageVQA [20], MATH [21], and AIME datasets. Then, we seek to
generate more data to finetuning Qwen2-VL-7B. A further extension of this work would be to
consider the use of this framework to compute sequential finetuning. We hope future works
address the following: 1) Can a model be self-improved in a way that can allow it to solve more
complicated questions that require deeper reasoning traces? 2) How much improvement does each
iteration of our methodology improve the model? What sequence of curated data is optimal to drive
this self-improvement look? We plan to visit these questions after the submission of our course project.

Our methodology produces one positive and many negative pairs for each question. We
hope that future works can consider the correction of a negative trace given the correct answer and a
positive trace. We hypothesize that a distribution of positive traces and negative traces would help the
models learn reasoning more robustly and less noisy. The benefit of such methodology is unknown,
and we leave these theories to future works.
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A Supplementary Material
We now describe additional material to support claims we make in this paper.

A.1 Examples of MCTS Traces

We present an explicit example of our work.

Figure 2: Find Angle H

In the following generation, the model achieves the wrong answer:

, and \((x+10)*\circ\).

A.2 Trace ID samples from MathVista

We use the following sampled trace ids from MathVista for comparison:

traceids = [7, 26, 28, 31, 33, 45, 47, 72, 81, 82, 90, 95, 96, 100, 104, 105, 115, 128, 143, 160, 164,
167,197, 204, 215, 221, 224, 226, 229, 234, 239, 251, 271, 282, 285, 297, 301, 345, 349, 353, 364,
368, 371, 374, 380, 388, 390, 430, 433, 460, 465, 471, 518, 550, 559, 566, 575, 592, 604, 605, 617,
619, 634, 644, 651, 655, 666, 678, 687, 693, 715, 719, 722, 734, 748, 755, 759, 760, 778, 782, 792,
826, 827, 829, 850, 855, 868, 876, 883, 888, 891, 907, 914, 948, 955, 965, 979, 984, 987, 991].
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